

UNITED STATES DISTRICT COURT

WESTERN DISTRICT OF TEXAS
WACO DIVISION

INTERNATIONAL BUSINESS MACHINES
CORPORATION,

Plaintiff,

v.

LZLABS GMBH, and
TEXAS WORMHOLE, LLC,

Defendants.

Civil Action No.:

DEMAND FOR JURY TRIAL

COMPLAINT

Plaintiff International Business Machines Corporation (“IBM”) files this Complaint

against Defendants LzLabs GmbH (“LzLabs”) and Texas Wormhole, LLC (“Texas Wormhole”)

(collectively, “Defendants”) and alleges as follows, based on knowledge as to itself and its own

acts and on information and belief as to all other matters except as indicated otherwise.

INTRODUCTION

1. Once again, IBM must bring a lawsuit against a company owned and

controlled by John Moores (“Moores”) to stop it from misusing IBM’s intellectual property.

LzLabs is a company based in Switzerland, controlled by Moores, and run by Moore’s long-time

business associate, Thilo Rockmann (“Rockmann”). LzLabs was formed by Moores in 2011,

shortly after Moores and his prior company were enjoined by this Court for engaging in a

scheme to free-ride on IBM’s mainframe business. Now, LzLabs is the vehicle through which

Moores and Rockmann are attempting to engage in another free-riding effort.

2. Moores and Rockmann’s first order of business for LzLabs was to figure out

how it could gain access to IBM mainframe software. To acquire that access, LzLabs set up a

shell entity to license the IBM mainframe software from a subsidiary of IBM (IBM UK). This

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 1 of 60

2

shell entity is called Winsopia. Winsopia has no business, except to act at the direction of

LzLabs. And that direction is to engage in improper reverse engineering of the IBM software to

gain IBM’s trade secret and proprietary information. LzLabs then uses this information to

develop a product offering that LzLabs claims is a plug-and-play replacement for the very IBM

offerings LzLabs deceitfully obtained – IBM’s industry-leading mainframe system software.

3. LzLabs’ alleged plug-and-play replacement for IBM’s mainframe system

software is called the Software Defined Mainframe (“SDM”). LzLabs claims its SDM can run

customer owned software applications written for IBM mainframes and process the related data

without making modifications to the code or data for those applications, thereby, (according to

LzLabs), duplicating the functionality of IBM mainframe systems.1 While IBM has committed

decades of engineering effort and billions of dollars of investment to develop its industry-leading

mainframe systems, LzLabs claims to have achieved this feat in a fraction of the time and with a

fraction of the engineers IBM used.

4. After IBM UK learned of the connection between the shell entity Winsopia

and LzLabs (and to ensure compliance with the agreements by which the shell entity licensed the

mainframe software), IBM UK exercised its audit rights under its agreements with Winsopia.

Winsopia, however, refused to comply with the audit request, even though IBM UK’s audit

rights under the agreements are not discretionary and do not require assent. In fact, before it

would even entertain the audit request, Winsopia demanded that IBM UK sign a non-disclosure

agreement that effectively required IBM to waive its legal rights before Winsopia provided any

of the requested information.

1 Even if the SDM could run IBM mainframe applications without modification, which it likely cannot, the SDM
cannot provide the same reliability, security, availability and performance as the IBM mainframe systems.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 2 of 60

3

5. Despite the efforts LzLabs has taken to conceal its wrongful activity, IBM has

recently collected what information it can find, and as detailed below, has determined what logic

dictates, i.e., that LzLabs could not have developed its SDM offering with the specific

functionality it claims without misappropriating IBM’s intellectual property.

6. Remarkably, as mentioned above, this is not the first time Moores and

Rockmann have attempted to free-ride on IBM’s mainframe business and cover it up. The first

attempt by the pair to misappropriate IBM’s intellectual property was through a company called

Neon Enterprise Software, LLC (“Neon”). Moores controlled Neon, and Rockmann ran Neon’s

European sales efforts.

7. In 2009, Neon introduced a product named “zPrime.” zPrime modified the

operation of IBM’s mainframe systems to enable customers to offload processing from certain

IBM mainframe processors and, in turn, to reduce the fees customers owed to IBM for IBM

software. The modifications were a direct violation of the customers’ contracts with IBM, and

Neon knew it. In fact, at the time, Rockmann admitted that zPrime went “against what IBM

intended their systems to do.”2 Nonetheless, Neon proceeded with its efforts, believing it could

generate a revenue stream based on a percentage of the fees its software allowed customers to

save – even though the generation of that revenue stream was illegal, because it depended on

inducing IBM’s customers to breach their agreements with IBM by misappropriating computing

capacity.

8. Neon’s scheme also depended on its misuse of IBM’s intellectual property.

Unable to develop the zPrime software legally, Neon, having acquired an IBM mainframe

2 Peter Judge, IBM Tries To Stall Neon’s zPrime Mainframe Booster, Silicon.co.uk (Aug. 28, 2009),
https://www.silicon.co.uk/e-enterprise/financial-market/ibm-tries-to-stall-neons-zprime-mainframe-booster-1708
(last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 3 of 60

4

system (including the operating system software), illegally reverse-engineered IBM software to

discover and use IBM proprietary information, made illegal copies of IBM software, and caused

users of its zPrime software to do so as well – all in violation of IBM’s intellectual property

rights and the agreements under which Neon licensed the IBM mainframe software.

9. In 2010, IBM brought claims against Neon for tortious interference with

IBM’s contracts with its customers, breach of Neon’s own license to IBM’s mainframe software,

copyright infringement, and Lanham Act violations. See Neon Enterprise Software, LLC v.

International Business Machines Corp., Case No. 1:09-cv-00896 (W.D. Tex.). Then in 2011,

this Court entered a permanent injunction against Neon, Moores, and a number of Neon

executives. Neon Enterprise Software, LLC v. International Business Machines Corp., Case No.

1:09-cv-00896 (W.D. Tex.), Dkt. 165 (May 31, 2011). The permanent injunction resulted not

only from Neon’s misuse of IBM’s intellectual property rights and breach of Neon’s contractual

obligations to IBM, but also from Neon’s blatant attempt to hide its wrongdoing by destroying

evidence and misrepresenting its conduct—under oath—even after the litigation was filed.

10. Not to be deterred, even after this Court stopped them once, Moores and

Rockmann have picked up where they left off, with LzLabs as the “new Neon.” While LzLab’s

endgame is the same as Neon’s—to free ride on IBM’s mainframe business—it is doing so in a

different way. Rather than divert a portion of the revenue owed by customers for their use of

IBM mainframe computing resources, LzLabs engaged in a scheme to replace the entire IBM

mainframe system. LzLabs could have competed legally for these computing workloads, but it

did not even attempt to do that. But like Neon before it, LzLabs chose a path that violated IBM’s

rights. LzLabs’ efforts should end the same way Neon’s efforts ended – with this Court ordering

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 4 of 60

5

LzLabs to stop its wrongful conduct and properly compensate IBM for the misuse of its

intellectual property.

JURISDICTION AND VENUE

11. The Court has jurisdiction over this action under 28 U.S.C. §§ 1331, 1338,

and 1367.

12. Personal jurisdiction is proper against LzLabs because it has engaged in

substantial activities in the United States in connection with the development, marketing, and

offers for sale of its SDM. LzLabs engages in widespread marketing efforts of its SDM in the

United States.3 LzLabs also advertises several major partnerships providing access to its SDM

through the cloud.4 Moreover, LzLabs has made direct offers for sale and engaged in numerous

discussions concerning the operation of the SDM with at least one IBM mainframe customer in

the United States.

13. LzLabs has engaged in development work for its SDM in the United States,

including within Texas. Defendant Texas Wormhole is LzLabs’ Austin, Texas-based

development arm, engaging in development of the SDM in this District. Texas Wormhole acts

under the direction (and for the exclusive benefit) of LzLabs. By way of example, Texas

Wormhole employees Steve Towns5, Gary Trinklein6, Tom Harper7, and Tommy Sprinkle8

3 See, e.g., https://www.lzlabs.com/resources/lzlabs-expands-into-north-american-market-liberating-legacy-
applications/ (last visited February 17, 2022).

4 See, e.g., https://www.lzlabs.com/resources/lzlabs-expands-into-north-american-market-liberating-legacy-
applications/ (last visited February 17, 2022).

5 (https://www.linkedin.com/in/steve-towns-95908218/) (last visited February 17, 2022)

6 (https://www.linkedin.com/in/gary-trinklein-b5480942/) (last visited February 17, 2022)

7 (https://www.linkedin.com/in/tom-harper-57537216/) (last visited February 17, 2022)

8 (https://www.linkedin.com/in/tommy-sprinkle-50a63599/) (last visited February 17, 2022)

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 5 of 60

6

reside, according to their respective LinkedIn profiles, in Texas, and all have roles relating to

software development, such as software engineer, developer, or architect. Tom Harper is

expressly named in the Neon injunction. These individuals’ work for LzLabs includes

development of the LzLabs SDM including the reverse assembling, reverse compiling,

translating, or reverse engineering of IBM software to develop the SDM.

14. Venue is proper in this District under 28 U.S.C. § 1391 and 1400. For

example, Texas Wormhole has a regular and established place of business in this District and

engages in development and use of the SDM in this District, actions that infringe the patents

asserted in this action. LzLabs has directed Texas Wormhole’s misappropriation in this District.

Furthermore, because LzLabs is a foreign corporation subject to personal jurisdiction in the

United States, venue is proper in any United States District Court for the causes of action

asserted here.

THE PARTIES

15. Plaintiff IBM is a corporation organized and existing under the laws of New

York, with its principal place of business in Armonk, NY. IBM designs, manufactures, sells, and

licenses computer hardware and software, and provides related services.

16. Defendant LzLabs is a company organized and existing under the laws of

Switzerland with its principal place of business at Richtiarkade 16, 8304 Wallisellen,

Switzerland. LzLabs purports to be a software development company.

17. Defendant Texas Wormhole, LLC is an LLC organized and existing under the

laws of Delaware, with its principal place of business at 111 Congress Avenue, Suite 2600,

Austin, TX 78701. It is an affiliate of LzLabs and works on the development of LzLabs’ SDM at

the direction of, and for the benefit of, LzLabs.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 6 of 60

7

FACTS

IBM Mainframes

18. As part of its server and hybrid cloud offerings, IBM designs, manufactures,

and sells IBM mainframe systems that are extremely reliable and secure and that experience

minimal downtime and that are used by IBM’s customers, including large companies,

governments, and organizations for a variety of critical computing work. These systems include

hardware, such as the mainframe servers and storage devices, as well as operating systems and

other software designed, developed and licensed by IBM. IBM mainframe systems can store

massive amounts of data and process billions of calculations and transactions in real time. They

are critical to commercial databases, transaction servers, and other applications that require high

resiliency, security, and agility. IBM customers use their mainframe systems for a wide range of

tasks such as processing customer orders, executing secure and voluminous financial

transactions, managing payrolls, and tracking inventory. IBM’s current line of mainframe

computers consists of its IBM Z models, the most recent being the IBM z15.

19. IBM’s mainframe computer servers face intense competition from many on-

premises and cloud server offerings, including Linux and Microsoft Windows-based systems

executing on x86-based computer architectures, with respect both to retaining existing

computing workloads and attracting new workloads. IBM mainframe systems represent a small

portion of all servers, whether on-premises or cloud based. IBM has continued to invest in its Z

mainframe computer servers and software to provide customers a computing platform with the

highest security, performance, and availability. For example, IBM’s continued investment has

resulted in important innovations in areas such as cybersecurity, encryption and artificial

intelligence.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 7 of 60

8

20. IBM welcomes competition, believing that competition drives innovation and

results in improved performance, value, and reliability for its customers. However, that

competition must be lawful. IBM brings this suit to address LzLabs’ unlawful development of

its SDM and illegal use of IBM’s software.

The Proprietary IBM Multi-Level Software Environment

21. As described more fully below, IBM has created a multi-level software

environment, based on a proprietary mainframe Instruction Set Architecture, to operate on its

mainframe computers. IBM developed the collection of software that forms this multi-level

software environment through extensive software engineering and research and development

efforts over a period of approximately 60 years and an investment of billions of dollars. The

extensive effort and investment have resulted in a secure and proprietary multi-level software

environment that is protected by valuable intellectual property rights of IBM.

22. Figure 1, below, shows the levels of the IBM mainframe software and

hardware environment. The top four levels represent software, and the fifth and lowest level

represents the mainframe computer hardware (which is a combination of hardware and

specialized software). The top level of the diagram shows customer applications, which are

programs that are generally developed for the specific needs and business of a customer. The

next level down shows the compilers and run time services that are used to turn the language

used to write the customer application (often referred to as source code) into code that can be run

on the hardware itself, together with run time services. The third level down shows the

middleware services that provide necessary functions (such as database and customer transaction

processing functions) necessary to support the customer application. The fourth level down

shows the operating system layer, which provides additional services and access to the

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 8 of 60

9

underlying hardware functions. And the bottom level shows the processing of the instructions

that are run on the processors of the hardware itself.

Fig. 1: IBM Mainframe Environment

23. The software programs or “applications” shown in the top layer can be written

by IBM, independent software vendors, or IBM customers to perform user-oriented tasks.

Application software programs perform specific functions for users, such as processing financial

transactions or payroll management. These are typically programs with which the customer

interacts and that provide functionality developed or tailored specifically for a complex business

need of the customer – such as secure banking transactions, shipping logistics, or a worldwide

airlines reservation system. Most mainframe applications need to be constantly on-line (meaning

very little downtime), secure, fast, and capable of processing large amounts of data.

24. Customer applications for use on the IBM mainframe (such as those described

above) are typically written in high-level (somewhat English-like) programming languages, such

as COBOL (COmmon Business Oriented Language) or PL/I (Programming Language One). A

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 9 of 60

10

program as written by a programmer (in COBOL, PL/I, or another programming language) is

generally referred to as the “source code” for the program.

25. The next level, i.e., the second layer in Figure 1, includes “compilers” and

“run-time services.” Programs called “compilers” translate source code that is written in a

language such as COBOL or PL/I into “machine language” instructions that the computer

ultimately processes. Like any computer, an IBM mainframe computer contains various

hardware components, including processors (which perform computations and execute

instructions) and memory (which stores data used by the computer). These components only

understand data and instructions in binary form (i.e., in “1”s and “0”s). Moreover, the processors

only understand and process a particular set of instructions, and accordingly, every program that

a computer processor executes must be comprised of instructions in the language that computer

processor is programmed to run. These instructions are commonly referred to as “machine

language.” The machine language produced by a compiler (such as the COBOL compiler shown

in Figure 1) is typically referred to as the “object code” for the program. After compilation, the

resulting object code is organized9 into what is called an executable load module that interacts

with the compiler run-time services and with the middleware layer, the operating system layer,

and the processors that execute the machine instructions, each of which is described below. The

executable load module may be repeatedly executed without re-compiling the source code.

26. Compilers generally translate source code instructions written by the

programmer directly into sets of machine language instructions. However, for certain source

code instructions—typically those that require complex sets of machine language instructions—

9 This process involves binding (or “link-editing”) the object code for customer-written programs together with the
object code for various IBM-written licensed programs.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 10 of 60

11

compilers embed in the object code sets of machine language instructions that result in “calls” to

certain pre-coded auxiliary service routines. IBM’s COBOL and PL/I compilers use this

technique, and such service routines are generally referred to as IBM’s “COBOL & PL/I

Runtime Service Routines.” Each COBOL & PL/I Runtime Service Routine is a program or set

of programs that includes valuable code created by IBM software engineers. COBOL & PL/I

Runtime Service Routines are included in a software library that is provided to customers under

a license that restricts what can be done with them. Unlike the Middleware Service Routines

described below, the requests for which are generally coded by the customer application

programmer, calls to COBOL & PL/I Runtime Service routines are typically inserted by the

compilers and operate within the customer application program without the need for the

customer application programmer to be aware of or actively involved with the process of

embedding the requests for, or “calls” to, these service routines. Determining all the non-public

detailed information regarding the COBOL & PL/I Runtime Service Routine code can only be

accomplished through substantial effort that is prohibited by the license agreement covering

these services.

27. Middleware products form the next level down, i.e., the third level from the

top, in Figure 1. The listed IBM middleware products are specialized programs, the primary

purpose of which is to provide commonly used services to customer application programs, as

well as to assist in setting up the complex environments necessary for the operation of customer

applications. As indicated in the diagram, the IBM middleware programs that contain such

“Middleware Service Routines” that IBM has developed for use with its IBM Z mainframe

machines include IBM’s Customer Information Control System (“CICS”), its Information

Management System (“IMS”), and its Db2 products, each of which is described below.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 11 of 60

12

28. CICS is a middleware service that provides a general-purpose transaction-

processing subsystem that can be utilized by the customer applications to provide necessary

functionality to run an application online. For example, applications can be made accessible to

users from local or remote workstations, so that the application can process requests from one

user while other users of that application can submit requests that utilize the same programs,

files, and data at the same time the original request is being processed.

29. IMS provides database services commonly used to process online

transactions, as well as transaction processing services like those provided by CICS. The

database services provided by IMS involve databases in which the data is organized

hierarchically. Those provided by Db2 involve “relational” databases, in which the data is

organized in sets of related tables.

30. These middleware products provide customer applications with the ability to

call a large variety of IBM software modules to provide functionality commonly needed to

implement the types of customer applications generally run by IBM mainframes, without the

need for the customer application developer to write all the complex code necessary to

implement such functionality.

31. Like COBOL and PL/I Runtime Service Routines, each IBM Middleware

Service Routine is a valuable program or set of programs that represents the fruits of extensive

coding and research and development efforts by IBM software engineers over the course of

many years. Each such Middleware Service Routine serves as a software module that can be

invoked by a customer application, which—among other benefits—saves customer application

developers from having to write the code that is contained in the module. When the customer

application developer writes a customer application, she can include language that will, after

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 12 of 60

13

translation and compilation, result in binary code that sets up the input for, calls, and receives the

output from a given Middleware Service Routine providing the commonly desired functionality.

32. IBM provides its Middleware Service Routines to customers for a fee and

pursuant to a license that restricts what can be done with them. Customers who pay for a license

to middleware containing such Middleware Service Routines are provided with high-level

descriptions of the operation of each Middleware Service Routine and an Application

Programming Interface (“API”) specification of how to write, in a customer application program,

source code that will result in binary code that invokes the desired service provided by the

middleware, but IBM ordinarily does not provide them with a detailed description of the

Middleware Service Routine code or architecture, or with all the detailed information about how

the Middleware Service Routine code interacts with compiled application code. Determining all

the non-public, detailed information regarding the Middleware Service Routine code can only be

accomplished through substantial effort that is prohibited by the license agreement covering

these services.

33. At the next level down in Figure 1, i.e., the fourth level from the top, the

operations of the IBM mainframe environment are coordinated by one or more operating systems

(“OS”). OS programs provide additional callable services and manage a computer system’s

internal workings (often referred to as “hardware”), including the allocation, use, and

management of memory, processors, connection paths for input and output, devices, and file

systems. IBM’s primary proprietary operating system for its mainframe computers is called

“z/OS,” which IBM first released in 2001. It is compatible with a range of commercial and

open-source application software programs and is designed to be backward compatible with

older systems and software. OS programs, such as z/OS, also provide an additional set of

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 13 of 60

14

services (called Operating System Services) that can be used by customer application programs.

Examples of such services are those provided by the VSAM (Virtual Storage Access Method)

component of z/OS, which includes services to assist customer application programmers in

performing complex tasks such as reading and writing information to various external data

storage devices, such as tape drives, disk drives, and other, more complex mass storage facilities

that house the enormous amounts of data that are processed by today’s mainframe computer

systems. As with the middleware services, customers who pay for a license to IBM’s z/OS

operating system containing such Operating System Services are provided with high-level

descriptions of the operation of each available Operating System Service and an API

specification explaining how to set up the input for, call, and receive the output from each such

service in a customer application program. But IBM ordinarily does not provide customers with

a detailed description of the Operating System Service’s code or architecture or all the ways it

interacts at a binary level with compiled application code. Once again, determining all the non-

public detailed information regarding the Operating System Service code can only be

accomplished through substantial effort that is prohibited by the license agreement covering

these Operating System Services.

34. The bottom layer of the IBM mainframe environment, the lowest level in

Figure 1, is the hardware itself.10 The IBM mainframe hardware is designed to provide a

complex and specific Instruction Set Architecture (“ISA”) executed on the processors, and like

other competing hardware platforms, it will only execute programs composed of machine

instructions that conform to that architecture. IBM’s proprietary mainframe ISA has been

10 The hardware includes embedded software referred to as Licensed Internal Code, millicode, or microcode.
Together, this hardware and embedded software comprise the machine interface as seen by the upper software
layers.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 14 of 60

15

steadily extended and improved over approximately 60 years to the point where the ISA now

includes about 1200 instructions, along with a complex, and similarly evolved, architecture

infrastructure that is necessary for these 1200 instructions to properly operate.

35. As noted above, the IBM Compilers (along with their associated run time

services), the IBM Middleware Service Routines, and the IBM Operating System Services are

provided to a customer only pursuant to a license agreement. Such license agreements allow the

customer to utilize the software only in certain prescribed ways and for certain purposes. These

license agreements also prohibit certain activity with respect to the licensed software. Among

other things, the license agreements prohibit the reverse assembly, reverse compilation,

translation and/or reverse engineering of the IBM software. This in turn protects the IBM trade

secrets embodied within such software that have resulted from decades of development and the

investment of billions of dollars. Generally, the IBM software described above is provided to the

customer only in object (or binary) form. It is a string of 1s and 0s that are not, in any

meaningful sense, readable by humans. However, reverse assembly, reverse compilation,

translation, and/or reverse engineering of the IBM binary software could enable someone to

discern the proprietary structure, form, operation, and implementation details of the IBM

software, and use of this information would amount to an ill-gotten benefit of the investments

IBM has made over many years to develop such software. Because this is a common issue with

software, software today is often provided to users only in object form and under license

agreements containing similar prohibitions on reverse assembly, reverse compilation, translation

and/or reverse engineering.

36. Many of the various internal components of the IBM software and hardware

architecture are trade secrets, and IBM’s license provisions that prohibit the reverse assembling,

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 15 of 60

16

reverse compiling, translating, or reverse engineering of IBM object code are a crucial element

of their protection. Although certain information about external aspects of the software and

related architecture may be provided to customers, core information about internal aspects of the

software is typically not made available to customers and is not otherwise generally known to,

nor ascertainable by authorized means by customers or other persons who can obtain economic

value from their disclosure or use.

37. IBM holds numerous patents resulting from the development of its mainframe

system. Many of these patents are related to its mainframe ISA, operating systems, middleware,

and software applications, as well as patents relating specifically to computer programs for

emulation and translation procedures that provide efficiency in the complex mainframe

environment or non-mainframe environments where mainframe hardware or software emulation

is performed.

38. As explained below, in the development, sale, offer for sale, importation,

installation, and operation of its “Software Defined Mainframe,” LzLabs misappropriated

valuable IBM trade secrets and has infringed the five IBM patents discussed further below.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 16 of 60

17

LzLabs’ Software Defined Mainframe

39. Defendant LzLabs claims it has developed what it calls a “Software Defined

Mainframe” or “SDM.” LzLabs describes the SDM as a “platform” that includes, at least,

components LzLabs refers to as “LzBatch,” “LzOnline,” “LzRelational,” “LzHierarchical,”

“LzWorkbench,” and “LzVault.”11 LzLabs also offers SDM-related services including

“LzDiscover” and “LzEnable.”12 Information concerning LzLab’s SDM offering in this

Complaint comes largely from LzLabs’ own marketing of its SDM.

40. In contrast to the IBM mainframe software that operates on IBM’s mainframe

hardware, the SDM operates on an x86 architecture platform, with processors sold by Intel or

AMD, and running a Linux operating system. LzLabs claims that the SDM provides

functionality that is equivalent to that of the IBM mainframe and software environment, but on

the x86 and Linux platform.13 Specifically, LzLabs claims that customer applications written

and compiled for the IBM mainframe environment, such as that described above, can be operated

on the SDM “without changes and without compromise to performance.”14 15

41. A key part of LzLabs’ “sales pitch” for its SDM appears to be a claim that

“modernization” of “legacy” mainframe applications is very difficult or impractical on the

11 lzlabs.com/resources/lzlabs-gotthard-opens-escape-route-for-trapped-mainframe-users/ (last visited February 17,
2022)

12 https://www.lzlabs.com/resources/how-to-produce-a-mainframe-migration-plan-lzenable/ (last visited February
17, 2022)

13 What IS a Software Defined Mainframe? (October 8, 2017), https://www.linkedin.com/pulse/what-software-
defined-mainframe-dale-vecchio/ (last visited February 17, 2022).

14 LzLabs Works with COBOL-IT to Shift Customer Mainframe Applications to Open Source Software, LzLabs
(Apr. 28, 2016), https://www.lzlabs.com/lzlabs-partners-with-cobol-it-to-enable-seamless-mainframe-application-
migration/ (last visited February 17, 2022).

15 LzLabs Unveils World’s First Software Defined Mainframe, LzLabs (March 14, 2016),
https://www.lzlabs.com/lzlabs-unveils-worlds-first-software-defined-mainframe/ (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 17 of 60

18

mainframe, and that LzLabs offers an “easier”16 path to modernization by migrating mainframe

applications to an x86-based Linux environment where it provides tools to assist the customer in

modernizing parts of the application.17 Contrary to this claim, however, IBM has made and

continues to make significant investments in effective and efficient application modernization

approaches that permit the customer to continue to take advantage of the mainframe’s proven

reliability, availability, serviceability, security, scalability, agility, and performance while also

integrating with services running on other platforms to create what the industry terms a hybrid

cloud environment.

42. If, however, the migration of an IBM mainframe application to another

platform is desired, rewriting and recompilation of the application source code to adapt it for the

new platform are required in almost all cases. Such migration may also require translation of

underlying data used by the application to new data formats. LzLabs claims that the SDM can

skip this process. The purported attraction of the SDM approach thus is the promise that the

mainframe application can be migrated with “no recompilation” needed and without conversion

of its mainframe data, which can be read and written in its “native formats.” In other words, the

customer application can run “as is” on the SDM platform, according to LzLabs.

43. In a May 2019 article, LzLabs’ then CEO Mark Cresswell explained the

LzLabs SDM as follows:

The [mainframe] load module interacts with the operating system through the
language environment, it never interacts directly. We’ve created a language
environment that is compatible with the way the ones on the mainframe work, so
the load module only ever talks to us—through this language lab—and then we

16 Mainframe modernization’s knowledge transfer paradox, LzLabs (December 16, 2021),
https://www.lzlabs.com/resources/mainframe-modernizations-knowledge-transfer-paradox/ (last visited February
21, 2022)

17 See, e.g., A Graceful Path to Legacy Modernization, an LzLabs White Paper, 2018 and LzLabs’ Mainframe
Modernization Survey 2019.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 18 of 60

19

simply turn around and use whatever underlying facilities are available to us—
Postgress [sic], Linux, LDAP, and so on, to get the job done. That is how we deal
with the fact that you’ve got all this mainframe stuff out there—we don’t need to
worry about it. We just have to present to the application the APIs that
application might otherwise be using on the mainframe, in a language it
understands.18

44. The primary targets of LzLabs’ SDM are mainframe applications written in

the COBOL and PL/I computing languages, including those that use IBM’s middleware and

operating system runtime services.19 Unlike other migration services, which operate on the

source code level, LzLabs claims to move applications seamlessly to Linux platforms—not in the

COBOL or PL/I source code form that is written by the programmer (i.e., the IBM customer),

but rather at the compiled binary machine code level, which, together with certain IBM licensed

code modules, makes up the load module or executable form of the program. In this way,

LzLabs claims to be able to perform the migration without recompilation, even if a customer no

longer possesses source code versions of its applications.

45. To accomplish this feat, i.e., to duplicate the operation of the IBM mainframe

and software environment in the way that LzLabs claims the SDM does, the SDM must mimic

exactly the operation of core portions of the IBM software and architecture. The necessary

mimicking includes, at a minimum, key portions of the IBM Operating System Service Routines,

Middleware Service Routines, and COBOL & PL/I Runtime Service Routines outlined above. It

18 Max Smolaks, LzLabs kills Swisscom’s mainframes – but it’s not the work of a vicious BOFH: All the apps are
now living on cloud nine, The Register (May 16, 2019),
https://www.theregister.com/2019/05/16/lzlabs_kills_swisscoms_mainframes/ (alteration in original) (last visited
February 17, 2022).

19 Although IBM believes that LzLabs’ primary emphasis is support of COBOL and PL/I applications, LzLabs
apparently claims some level of support for C language and Assembler language applications as well. This is
reflected, for example, in the following LzLabs statement: “Interpretive execution is the basic mode of SDM
operation. This approach enables the execution of legacy application programs written in COBOL, PL/I, C, and
Assembler.” [The Anatomy of Mainframe Application Workload Migration, an LzLabs White Paper, April 2018, p.
2.]

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 19 of 60

20

also includes emulation, or some other form of translation, of the application’s IBM mainframe

ISA instructions into x86 ISA instructions, the only instructions recognizable to the hardware

processors on the x86 machines on which LzLabs claims its SDM runs.

46. To make this mimicry possible, LzLabs would need to have gained access to

low-level information about the IBM Service Routines. Specifically, LzLabs would have

required detailed information about the way the service routines interact with the compiled

application code at a binary level and the required functional behavior of such routines. Due to

the volume, complexity, and lack of publicly available information about certain aspects of such

binary-level interaction and required functional behavior of the associated IBM service routines,

LzLabs could not legitimately obtain such information without reverse assembling, reverse

compiling, translating, or reverse engineering of IBM material. Such reverse assembling, reverse

compiling, translating, or reverse engineering, at a minimum, would have required LzLabs or

someone working on its behalf to undertake activities prohibited by the agreements under which

IBM licenses its mainframe hardware and software. At a minimum, LzLabs or someone working

on LzLabs’ behalf engaged in improper reverse assembly, reverse compiling, or translating of

the IBM software and Service Routines to convert object code versions of the IBM software into

source code versions (or intermediate language versions) that can be read and understood by

humans, and/or other types of improper reverse engineering of the IBM software. This would

have allowed LzLabs software engineers to inspect – and copy – information that is kept as

confidential trade secrets by IBM.

47. Examples of LzLabs’ reverse assembling, reverse compiling, translating,

and/or reverse engineering of the IBM Service Routines are discussed further below.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 20 of 60

21

LzLabs’ Improper Actions in Accessing, and Duplicating the Functionality of Key Portions

of the IBM Software

48. As summarized above: (a) each IBM Operating System Service Routine and

Middleware Service Routine includes APIs that define at the source code level what is required

for an application program to (i) set up the input for; (ii) “call”; and (iii) receive the output from

the Service Routines so that customer application programmers can reasonably write the source

code to invoke a required service; (b) for all except a small number of the language-specific

COBOL & PL/I Runtime Service Routines, such API information is not published because such

services are not intended to be requested directly by the application programmer, but rather are

invoked by object code inserted directly into the application program by, and at the discretion of,

the IBM compiler; (c) the details of all the ways in which the service routines interact with the

compiled application code at a binary level are generally not published, especially those for the

language-specific COBOL & PL/I Runtime Service Routines; and (d) for all IBM Service

Routines that are made available only in object code form, the details of the internal operation of

the IBM Service Routine itself are simply not available.

49. LzLabs could not have achieved the level of compatibility it claims for the

functionality it identifies for the SDM without having engaged in the types of prohibited reverse

assembling, reverse compiling, translating, or reverse engineering described above. To achieve

the level of compatibility LzLabs claims, it would have had to engage in this prohibited reverse

engineering activity with respect to a large volume of the proprietary and secret details of the

way in which the service routines interact with the compiled application code at a binary level

and the internal operation of the IBM Service Routines. The various IBM software programs

discussed above implicate hundreds of service routines, each with a different operational

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 21 of 60

22

characteristics and behavior. For example, across three generations of COBOL alone, there are

hundreds of COBOL Runtime Service Routines. Moreover, the inputs, outputs, application

binary interactions and operational characteristics of each of the service routines can have many

variations, totaling thousands of combinations and permutations that LzLabs would need to have

identified and duplicated to fully replace the IBM product service routines utilized by IBM

mainframe applications and for which it claims to provide substitutes.

Exemplary Misappropriations of IBM Service Routines

50. Applications compiled and linked on an IBM mainframe using the IBM

COBOL and PL/I toolchains contain or call, directly or indirectly, binary modules that are part of

the IBM mainframe software environment. To support such applications on the SDM, the

Defendants must have either executed the binary modules on the SDM or reverse assembled

and/or reverse compiled and/or otherwise reverse engineered those binary modules to re-

implement their functionality and the way in which they interact with the compiled application

code at a binary level. All such activities are prohibited by the license agreements under which

the IBM software is provided to customers.

51. Execution of an application developed and compiled on a mainframe using the

IBM COBOL implementation involves complex, unexposed interactions between the compiled

form of the application and the COBOL Runtime Services. Such interactions are not inherent in

the COBOL language itself but reflect design choices that have been made over the years by the

IBM teams that developed the COBOL Runtime Services and compiler. Such interactions are

generally of little or no concern to an application developer lawfully developing COBOL

applications on an IBM mainframe; however, to support existing customer COBOL applications

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 22 of 60

23

without the need for modification or recompilation of such applications, the developers of the

SDM needed to understand and replicate the detail of these complex and unexpected interactions.

52. Gaining the necessary knowledge and understanding to replicate the detail of

these complex and confidential interactions would have been impossible without reverse

assembling, reverse compiling, translating, or reverse engineering parts of (a) the IBM binary

modules link-edited into load modules for applications written in COBOL, (b) data blocks and

code fragments inserted into application binaries by the COBOL compiler and toolchain, and (c)

the COBOL Runtime Services, including code, data blocks, and their interactions.

53. By way of example, COBOL has a language feature known as ‘declaratives,’

one purpose of which is to allow application developers to specify application code that is to run

in the event of an error or exception occurring during an attempt to perform a file input output

(or “I/O”) operation (e.g., “read” or “write”). Because, for example, these error/exception

declaratives are for handling unexpected I/O conditions they are also referred to as I/O

declaratives. A single application may contain multiple I/O declaratives, each of which may be

specific to a file or may apply to all files but be specific to a particular kind of I/O operation

(e.g., a “read”).

54. The appropriate declarative-specified application code is called in the event of

an error or exception (or other specified condition) by the COBOL runtime. The mechanism for

resolving which declarative-specified code to call and when to do so is complicated and hidden

from application developers because it is part of the implementation detail of the IBM COBOL

compiler and runtime. The mechanism for resolving declaratives and the data structures used to

implement them are not discernable except through impermissible reverse engineering because

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 23 of 60

24

they are the result of numerous design choices made by IBM developers over many years of

development of the IBM software.

55. A second example of LzLabs’ misappropriation concerns a widely used

language feature of PL/I know as condition handling, which allows application developers to

specify the condition handling code to which control is passed in the event of a specified

condition (such as an error). Conditions can be qualified in numerous ways, and the same

condition can be handled by different code depending on the state of the application when the

condition is triggered. The number of permutations within an application is essentially

unlimited. The PL/I runtime is responsible for determining which code to execute, as well as the

parameters to use, upon the occurrence of a particular condition. The manner in which the PL/I

runtime determines the handling code to execute and the parameters to use is hidden from

application developers. The choices are undocumented and are the result of numerous design

decisions made by IBM engineers over the course of decades. These design choices are

discernable only in the human-readable version of the code for the IBM PL/I runtime routines,

which, as discussed above, is not provided to the customer.

56. Therefore, the SDM would not be able to recreate this functionality without

LzLabs’ (or someone acting at LzLabs’ direction) reverse assembling, reverse compiling,

translating, or reverse engineering of IBM’s implementation of this functionality within the PL/I

runtime routines.

57. Numerous other examples of functionality within the IBM compilers,

middleware, and service routines could only have been determined through impermissible

reverse engineering. The IBM compilers, middleware, and service routines were developed by

IBM over the course of decades and involved countless subjective design choices that cannot be

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 24 of 60

25

replicated based on publicly available information. The code necessary to implement such

functionality is maintained as a trade secret by IBM, and LzLabs’ improper reverse engineering

of that code constitutes misappropriation of those valuable trade secrets.

IBM Patents Infringed by LzLabs

58. The extensive investment and development effort in the IBM mainframe

software and hardware has not only resulted in valuable IBM trade secrets, but also a significant

number of patents covering many innovations resulting from IBM’s development of its

mainframe systems. For example, IBM created novel solutions to address efficiency and

performance problems relating to the emulation of IBM mainframe applications, including in

connection with the development of its IBM Z Development and Test Environment, as well as

novel additions to its mainframe Instruction Set Architecture. This action focuses on five such

patents.

59. U.S. Patent No. 9,804,823 (the “’823 Patent”), entitled “Shift Significand of

Decimal Floating Point Data,” was issued by the United States Patent and Trademark Office on

October 31, 2017. A true and correct copy of the ’823 Patent is attached as Exhibit 1.

60. The ’823 Patent provides systems and methods for efficiently using decimal

floating point data and instructions within a processing environment. Floating point refers to an

approach to representing numbers within a computing system in which the radix point (e.g.,

decimal point in base 10 systems) can float, or move, with respect to the significant digits

(significand) of the number, its location being controlled by a specified exponent applied to the

numerical base, such as base 10 in decimal, of the floating point representation. The use of

decimal floating point format to process decimal data has fewer limitations than other floating

point formats. For example, it is not subject to the precision losses inherent in the use of binary

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 25 of 60

26

or hexadecimal floating point format to process such data. The ’823 Patent facilitates the use of

decimal floating point instructions to perform calculations involving variables specified in other

decimal formats, such as packed decimal. Specifically, the patent teaches efficient decimal

floating point instruction formats and methods of operation for, e.g., the operations of scaling up

or down by powers of 10, adding or removing left or rightmost digits for alignment and/or

truncation of decimal values, and multiplying or dividing by powers of 10. The ’823 Patent

arose out of development efforts to improve the performance and efficiency of the IBM

mainframe architecture. IBM is the current owner by assignment of all right, title, and interest of

the ’823 Patent.

61. U.S. Patent 8,190,664 (the “’664 Patent), entitled “Employing a Mask Field of

an Instruction to Encode a Sign of a Result of the Instruction,” was issued by the United States

Patent and Trademark Office on May 29, 2012. A true and correct copy of the ’664 Patent is

attached as Exhibit 2.

62. The ’664 Patent provides effective systems and methods for employing

decimal floating point data and instructions within a processing environment. Among other

things, the ’664 Patent provides efficient ways to compose/decompose data that is in a different

decimal format into decimal floating point data format and, more specifically, an efficient way to

manage the sign of the result of a decimal floating point operation when that result is converted

into a different decimal format. IBM is the current owner by assignment of all right, title, and

interest of the ’664 Patent.

63. U.S. Patent No. 9,235,420 (the “’420 Patent), entitled “Branch Target Buffer

for Emulation Environments,” was issued by the United States Patent and Trademark Office on

January 12, 2016. A true and correct copy of the ’420 Patent is attached as Exhibit 3.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 26 of 60

27

64. The ’420 Patent provides systems and methods for managing indirect branch

instructions in an emulation environment. Branch instructions are instructions that are used to

change the sequence of execution of program instructions. Generally, the execution of an

indirect branch instruction will result in a destination address being calculated that directs the

program to the memory location for the next set of instructions to be executed by the program.

In an emulation environment where the instructions comprising the program must be translated

to a different set of instructions that the processor can execute (translating from one instruction

set architecture to another), the repeated calculation of the branch target address in the emulated

environment can result in significant unnecessary processing. To avoid unnecessary processing,

the ‘420 Patent preserves previously calculated indirect branch target addresses in a buffer, later

identifying and using such previously calculated target addresses when they are encountered

again. This provides for much more efficient operation in an emulation environment. IBM is the

current owner by assignment of all right, title, and interest of the ’420 Patent.

65. U.S. Patent No. 8,713,289 (the “’289 Patent”), entitled “Efficiently Emulating

Computer Architecture Condition Code Settings Without Executing Branch Instructions,” was

issued by the United States Patent and Trademark Office on April 29, 2014. A true and correct

copy of the ’289 Patent is attached as Exhibit 4.

66. The ’289 Patent relates to emulation of computer system architectures.

Specifically, the ’289 Patent provides methods and systems for handling condition codes in the

emulation process. Condition codes include codes set as the result of execution of an instruction

that can indicate an outcome status of the execution, such as an overflow. The ’289 Patent

provides sequences of instructions that produce valid condition code settings for an emulated

source architecture without the need for branch instructions from the target architecture. This

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 27 of 60

28

can help eliminate unnecessary branch instructions in the target code, which helps to improve the

efficiency of operation. IBM is the current owner by assignment of all right, title, and interest of

the ’289 Patent.

67. United States Patent No. 7,434,209 (the “’209 Patent”), entitled “Method and

Apparatus for Performing Native Binding to Execute Native Code,” was issued by the U.S.

Patent and Trademark Office on October 7, 2009. A true and correct copy of the ’209 Patent is

attached as Exhibit 5.

68. The ’209 Patent is generally directed to a method and apparatus of emulation

or other forms of translation that identifies an application call to a service routine native to the

environment for which the application was compiled and executes a corresponding service

routine native to the environment in which the application is emulated or for which it is

otherwise translated. The ’209 Patent provides for such wholesale substitution of a

corresponding service routine, rather than merely executing a translated version of the service

routine present in the environment for which the application was compiled. The patent provides

for much more efficient emulation or other translation of an application and the service routines

it calls than to simply emulate or translate the application instructions and the instructions of the

service routines it calls. IBM is the current owner by assignment of all right, title, and interest of

the ’209 Patent.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 28 of 60

29

LzLabs’ Attempts to Sell its SDM in the United States

69. LzLabs offers its SDM for sale to customers within the United States. It does

this through general offers and offers for demonstrations on its website. It also offers its SDM

for cloud implementation through the Microsoft Azure platform.

70. In a recent press release, LzLabs formally announced expansion into North

America to take advantage of the well-established mainframe customer base in North America.20

The majority of the mainframe customer base in North America is within the United States.

71. In or around February 2021, IBM became aware that LzLabs was

communicating with an IBM customer headquartered in Tennessee. Specifically, IBM became

aware that LzLabs had scheduled meetings to occur with that customer in Tennessee the week of

February 22, 2021, to explore migrating certain of that customer’s applications from an IBM

mainframe to LzLabs’ SDM. The IBM customer invited IBM to this meeting. When the

meeting was to begin and it became apparent to LzLabs that IBM was attending, LzLabs

canceled the meeting.

72. In connection with those efforts, LzLabs offered to sell its SDM to the IBM

customer within the United States and has made a test installation of the SDM in the United

States for that IBM customer.

20 LzLabs Expands into North American Market, Liberating Legacy Applications, LzLabs (July 14, 2020),
https://www.lzlabs.com/lzlabs-expands-into-north-american-market-liberating-legacy-applications/ (last visited
February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 29 of 60

30

LzLabs’ Advertising

73. LzLabs aggressively advertises its SDM, alleging that it has capabilities

functionally equivalent to that of IBM’s mainframe platform. These statements are false.

74. For example, LzLabs released an “LzLabs Software Defined Mainframe

Product Data sheet”21 (“Data Sheet”). According to its metadata, this pdf was created in October

2018. The Data Sheet states that one “Key Benefit[]” of the SDM is that it is a “[l]ow cost,

functionally equivalent platform for existing customer legacy system applications.” LzLabs has

made similar claims on other occasions, stating that its SDM “supports the necessary

functionally-equivalent subsystem APIs to enable transparent execution of the binary

representations of these programs and data.”22 LzLabs claims that compiled applications can be

migrated from the IBM mainframe environment to the SDM without modification.

75. These statements were false at the time they were made, and remain false

today. The SDM is not “functionally equivalent” to IBM’s mainframe platform. Rather, LzLabs

incrementally implements purportedly equivalent functionality of the IBM mainframe platform

on an as-needed basis as required by each new deployment of the SDM. Although LzLabs has

implemented certain specific equivalent functionality, it has done so through the

misappropriation of IBM’s trade secrets and infringement of IBM’s patents, as set forth in detail

above. But each new deployment of the SDM requires LzLabs to engage in custom development

to implement features and functionality of the IBM mainframe platform that LzLabs did not

21 https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWBplr (last visited February 17, 2022).

22 Swisscom Moves Entire Mainframe Workload to Software Defined Mainframe in the Cloud, LzLabs,
https://www.lzlabs.com/resources/swisscom-moves-entire-mainframe-workload-to-software-defined-mainframe-in-
the-cloud/ (last visited February 17, 2022); LzLabs teams up with Amazon Web Services to deliver legacy mainframe
applications in the cloud, LzLabs, https://www.lzlabs.com/resources/lzlabs-teams-up-with-amazon-web-services-to-
deliver-legacy-mainframe-applications-in-the-cloud/ (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 30 of 60

31

implement for prior SDM deployments. And each new development requires additional

improper reverse engineering of the proprietary IBM software. Therefore, although LzLabs has

documented publicly that it has implemented certain specific functionality in its SDM,

accomplished through trade secret misappropriation and patent infringement, its general claims

of being a functionally equivalent replacement for the IBM mainframe platform are false.23

76. These false statements have harmed IBM. These statements misleadingly

suggest that LzLabs’ SDM is a turnkey mainframe platform replacement when, in reality, each

SDM deployment relies on additional improper reverse engineering of IBM’s software to add

functionality not supported by the SDM. Each new deployment also relies on misappropriation

of additional IBM intellectual property. LzLabs never discloses these risks to potential

customers, instead claiming that the SDM is a functionally equivalent replacement for the IBM

mainframe platform. These false statements mislead current customers of IBM to believe that

the SDM is an alternative to the IBM mainframe platform that can operate their existing

applications. These false and misleading statements injure IBM by inducing customers to leave

the IBM mainframe platform under false pretenses. They also injure IBM by diminishing the

reputation of IBM and its mainframe system, suggesting that an offering developed in a short

period of time can match the speed, reliability, and security of the IBM mainframe system.

FIRST CAUSE OF ACTION
(Misappropriation of Trade Secrets – Defend Trade Secrets Act, 18 U.S.C. § 1836 et seq.)

77. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 76 as if fully set forth herein.

23 Even if the SDM could provide a functionally equivalent replacement for a particular IBM mainframe application,
which it cannot, the SDM cannot provide the same reliability, security, availability and performance as the IBM
mainframe systems.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 31 of 60

32

78. LzLabs’ and Texas Wormhole’s conduct constitutes a willful and malicious

misappropriation of IBM’s trade secrets in the United States. Such trade secrets include the

structure, function, and operation of IBM’s COBOL & PL/I Runtime Service Routines,

Middleware Service Routines, and Operating System Services (“Misappropriated Trade

Secrets”).

79. The Misappropriated Trade Secrets have independent economic value because

they are not generally known to, and not readily ascertainable through proper means by, other

persons who can obtain economic value from their disclosure or use. For example, the

Misappropriated Trade Secrets are not readily ascertainable absent the reverse assembling,

reverse compiling, translating, or reverse engineering of the Licensed IBM Software, which IBM

distributes with contractual restrictions on such activities.

80. IBM has maintained the secret, confidential information of the

Misappropriated Trade Secrets and has taken reasonable measures to keep the information secret,

including through employment agreements that require IBM employees to retain such

information confidentially and forbid disclosure of such information to anyone outside of IBM.

In addition, IBM places contractual restrictions on activities such as reverse assembling, reverse

compiling, translating, and reverse engineering of the Licensed IBM Software. Further, IBM

source code embodying the Misappropriated Trade Secrets is stored in source code management

repositories. Such source code management repositories are accessible only from within the

IBM intranet by an authenticated user. They are monitored for unusual network traffic to

maintain their security. User access to these source code management repositories is authorized

and revalidated on a quarterly basis. IBM employees are also required to take annual

cybersecurity education courses.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 32 of 60

33

81. In creating, using, marketing, and selling its SDM, LzLabs and Texas

Wormhole misappropriated the Misappropriated Trade Secrets. The SDM incorporates the

Misappropriated Trade Secrets, which were derived using improper means. LzLabs and Texas

Wormhole had no rights in the Licensed IBM Software, and therefore the reverse engineering,

reverse assembling, reverse compiling and/or translating they (or those on their behalf)

performed was unauthorized and improper. Although LzLabs set up a shell entity to license the

IBM software from IBM UK, LzLabs and Texas Wormhole further knew that any reverse

engineering, reverse assembling, reverse compiling and/or translating performed by the shell

entity was barred by its agreements with IBM UK.

82. LzLabs has been marketing and offering to sell the fruit of its

misappropriation, the SDM, which incorporates or whose development relies on the

Misappropriated Trade Secrets. These efforts have taken place within the United States.

83. Texas Wormhole has been using the fruit of its misappropriation, the SDM,

which incorporates or whose development relies on, the Misappropriated Trade Secrets. This

use has occurred in the United States.

84. LzLabs’ and Texas Wormhole’s misappropriation of IBM’s Misappropriated

Trade Secrets was willful.

85. IBM has been damaged as a result of LzLabs’ and Texas Wormhole’s

conduct, and seeks damages in accordance with proof at trial, but in any event sufficient to: (1)

compensate it for its actual losses, including lost profits resulting from LzLabs’ and Texas

Wormhole’s misappropriation, and (2) recover the amounts that LzLabs and Texas Wormhole

unjustly received as a result of its misappropriation of the Misappropriated Trade Secrets. In lieu

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 33 of 60

34

of the above, IBM is entitled to a reasonable royalty for LzLabs’ and Texas Wormhole’s

misappropriation.

86. In addition, because LzLabs’ and Texas Wormhole’s misappropriation was

willful and malicious, IBM is entitled to recover exemplary damages in an amount equal to twice

the damages otherwise recoverable, and to recover its attorneys’ fees and costs of suit.

87. If Defendants are not enjoined Defendants will continue to misappropriate and

use IBM’s trade secrets for their own benefit and to IBM’s detriment.

SECOND CAUSE OF ACTION
(Misappropriation of Trade Secrets – Texas Uniform Trade Secrets Act)

88. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 87 as if fully set forth herein.

89. LzLabs’ and Texas Wormhole’s conduct constitutes a willful and malicious

misappropriation, within this state, of the Misappropriated Trade Secrets to which IBM holds

exclusive rights in the United States.

90. The Misappropriated Trade Secrets have independent economic value because

they are not generally known to, and not readily ascertainable through proper means by, other

persons who can obtain economic value from their disclosure or use. For example, the

Misappropriated Trade Secrets are not readily ascertainable absent the reverse engineering,

reverse assembling, reverse compiling and/or translating of the Licensed IBM Software, which

IBM only distributes with contractual restrictions on such activities.

91. IBM has maintained the secret, confidential information of the

Misappropriated Trade Secrets and has taken reasonable measures to keep the information secret,

including through employment agreements that require IBM employees to retain such

information confidentially and through contractual restrictions on activities such as reverse

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 34 of 60

35

assembling, reverse compiling, translating, and reverse engineering of the Licensed IBM

Software.

92. In creating, using, marketing, and selling its SDM, LzLabs and Texas

Wormhole misappropriated the Misappropriated Trade Secrets. The SDM incorporates the

Misappropriated Trade Secrets, which were derived using improper means. LzLabs and Texas

Wormhole had no rights in the Licensed IBM Software, and therefore the reverse engineering,

reverse assembling, reverse compiling and/or translating they performed was unauthorized and

improper. Although LzLabs set up a shell entity to license the IBM software from IBM UK,

LzLabs and Texas Wormhole further knew that any reverse assembling, reverse compiling,

translating, or reverse engineering performed by the shell entity was barred by its agreements

with IBM UK.

93. LzLabs’ and Texas Wormhole’s misappropriation occurred at least in part in

the state of Texas. All of Texas Wormhole’s operations occur in Texas. In addition, LzLabs’

employees within Texas, including Steve Towns, Gary Trinklein, Tom Harper, and Tommy

Sprinkle engaged in misappropriation within the state of Texas through, at least, their use of the

SDM within the state.

94. LzLabs’ and Texas Wormhole’s misappropriation of IBM’s Misappropriated

Trade Secrets was willful.

95. IBM has been damaged by LzLabs’ and Texas Wormhole’s conduct, and

seeks damages in accordance with proof at trial, but in any event sufficient to: (1) compensate it

for its actual losses, including lost profits resulting from LzLabs’ and Texas Wormhole’s

misappropriation, and (2) recover the amounts that LzLabs and Texas Wormhole unjustly

received as a result of its misappropriation of the Misappropriated Trade Secrets. In lieu of the

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 35 of 60

36

above, IBM is entitled to a reasonable royalty for LzLabs’ and Texas Wormhole’s

misappropriation.

96. In addition, because LzLabs’ and Texas Wormhole’s misappropriation was

willful and malicious, IBM is entitled to recover exemplary damages in an amount equal to twice

the damages otherwise recoverable, and to recover its attorneys’ fees and costs of suit.

97. If Defendants are not enjoined Defendants will continue to misappropriate and

use IBM’s trade secrets for their own benefit and to IBM’s detriment.

THIRD CAUSE OF ACTION
(‘823 Patent Infringement – 35 U.S.C. § 271)

98. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 97 as if fully set forth herein.

99. Claim 1 of the ’823 Patent is exemplary, and states as follows:

A method for executing a machine instruction in a central
processing unit, the method comprising:

obtaining, by a processor, a machine instruction for execution, the
machine instruction being defined for computer execution
according to a computer architecture, the machine instruction
comprising an opcode, one register field, another register field, an
index field, a base field, and a displacement value;

performing a shift function on a significand of a decimal floating
point datum as that function is defined by the opcode of the
machine instruction, wherein the significand is stored in a location
designated by the one register field, the shift function comprising
shifting in one direction one or more decimal digits of the
significand a number of positions specified by a plurality of second
operand bits determined using the index field, the base field and
displacement value of the machine instruction; and

placing a result of the shift function in a location designated by the
other register field.

100. LzLabs’ SDM product, used by Texas Wormhole, meets all the limitations of

at least claim 1 of the ’823 Patent in violation of 35 U.S.C. § 271(a).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 36 of 60

37

101. LzLabs and Texas Wormhole have directly infringed, continue to infringe,

and/or, at least as of the filing of this Complaint, induce or contribute to the infringement by

others of one or more claims of the ’823 Patent by making, using, selling, offering for sale,

and/or importing into the United States, without authority of license, the “Software Defined

Mainframe” or “SDM” in violation of 35 U.S.C. §§ 271(a), (b), and (c). For example, LzLabs

has offered to sell its SDM to an IBM customer in Tennessee. LzLabs has also implemented the

SDM on Microsoft’s Azure cloud services in the United States. Texas Wormhole has used the

SDM in the United States in the course of its SDM development within the United States, and

within Texas.

102. By at least the filing of this Complaint, IBM has disclosed the existence of the

’823 Patent and identified at least some of LzLabs’ and Texas Wormhole’s activities that

infringe at least one claim of the ’823 Patent. Thus, based on this disclosure, LzLabs and Texas

Wormhole have knowledge of the ’823 Patent and that their activities infringe the ’823 Patent.

Based on IBM’s disclosures, LzLabs and Texas Wormhole have also known or should have

known since at least the filing of this Complaint that customers, distributors, suppliers, and other

purchasers of the SDM product are infringing the ’823 Patent at least because LzLabs and Texas

Wormhole have known that they are infringing the ’823 Patent.

103. For example, the SDM provides support for IBM COBOL Version 5 (COBOL

V5) as described above. See The Anatomy of Mainframe Workload Migration, LzLabs (Apr.

2018) (https://www.lzlabs.com/resources/the-anatomy-of-mainframe-application-workload) (last

visited February 17, 2022). Through this support, the SDM implements each of the IBM

mainframe z/Architecture instructions that make up a COBOL application program compiled for

execution on the IBM mainframe, and, in order to execute each such instruction, translates it

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 37 of 60

38

(singly or as part of a group of instructions encompassing it) into one or more x86 architecture

instructions that collectively produce the same results. For application programs compiled with

COBOL V5 with the ARCH(10 or 11) option, this translation includes the Shift Significand Left

and Shift Significand Right instructions that are the subject of the ’823 patent. See the ’823

Patent at 26:15-55.

104. Because application programs compiled with COBOL V5 with the ARCH(10

or 11) option can include these “Shift Significand” instructions, the LzLabs translation must

thereby include the translation of those instructions, which are defined for computer execution

according to the z/Architecture. These “Shift Significand” instructions each have an opcode (the

combination of the values at bits 0-7 and 40-47); one register field (R3); another register field

(R1); an index field (X2); a base field (B2); and a displacement value (D2). Id.

105. Further, as defined by the z/Architecture, the opcodes for these instructions

specify a left or right shift of the significand of a decimal floating point number. In order to meet

its claim of obtaining the same results when “executing” the object form of an application

compiled for the IBM mainframe, the LzLabs methodology must translate the application

mainframe instructions into x86 instructions that perform the same significand shift operation on

that same decimal floating point number. The location of the significand, the number of digits to

shift, and the location where the results are to be placed are each specified by the z/Architecture,

and the LzLabs SDM must adhere to that specification.

106. Specifically, as defined by the z/Architecture and, as performed by the SDM

according to LzLabs’ specific functionality claims, the significand to be shifted left or right is

located in the register, or register pair, designated by the one register field (R3). Then, the result

of the shift operation is placed in the register or register pair, designated by the other register

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 38 of 60

39

field (R1). The number of bits to be shifted is specified by the second operand of the instruction,

i.e., the rightmost 6 bits of the sum of the values in the registers specified in the index (X2) and

base (B2) fields and the value specified in the displacement field (D2).

107. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs also actively, knowingly, and intentionally induces

infringement of one or more claims of the ’823 Patent under 35 U.S.C. § 271(b) by actively

encouraging others to import, make, use, sell, and/or offer to sell in the United States, the SDM

product. LzLabs instructs its customers how to use the SDM product by allowing customer

applications written and compiled for the IBM mainframe environment, and utilizing proprietary

IBM software services, including the IBM Middleware Service Routines, IBM Operating System

Service Routines, and IBM COBOL & PL/I Service Routines, “without changes and without

compromise” on the SDM product, as described above. For example, the LzLabs Software

Designed Mainframe Product Data Sheet states the SDM enables applications written in COBOL

and PL/I and offers replacements for CICS and IMS.24

108. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs further contributes to the infringement of one more claims

of the ’823 Patent under 35 U.S.C. § 271(c) by offering to sell, selling, and/or importing into the

United States a component of the SDM product, or a material or apparatus for using in practicing

a process of claims in the ’823 Patent, that constitutes a material part of the inventions, knowing

the same to be especially made or especially adapted for use in an infringement of the ’823

Patent, and is not a staple article or commodity of commerce suitable for substantial

24 https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWBplr (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 39 of 60

40

noninfringing use. In this case, LzLabs’ SDM product is a material part of at least the invention

of claim 1 of the ’823 Patent for the reasons set forth herein.

109. LzLabs’ and Texas Wormhole’s patent infringement is willful, at least

because the SDM was created by copying the functionality of IBM hardware.

110. LzLabs’ and Texas Wormhole’s infringement has damaged and continues to

damage IBM in an amount yet to be determined, of at least a reasonable royalty and/or the lost

profits that IBM would have made but for LzLabs’ acts of infringement.

FOURTH CAUSE OF ACTION
(’664 Patent Infringement – 35 U.S.C. § 271)

111. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 110 as if fully set forth herein.

112. Claim 14 of the ’664 Patent is exemplary, and states as follows:

A method of executing a machine instruction by a central
processing unit, said method comprising: executing a machine
instruction, the machine instruction being defined for computer
execution according to a computer architecture and comprising an
opcode and a mask field, the executing comprising: performing an
operation that provides a result, said result comprising a sign; and
indicating by a selection indicator of the mask field how the sign is
to be encoded in response to the sign being a specified sign.

113. LzLabs’ SDM product, used by Texas Wormhole, meets all the limitations of

at least claim 14 of the ’664 Patent in violation of 35 U.S.C. § 271(a).

114. LzLabs and Texas Wormhole have directly infringed, continue to infringe,

and/or, at least as of the filing of this Complaint, induce or contribute to the infringement by

others of one or more claims of the ’664 Patent by making, using, selling, offering for sale,

and/or importing into the United States, without authority of license, the “Software Defined

Mainframe” or “SDM” in violation of 35 U.S.C. §§ 271(a), (b), and (c). For example, LzLabs

has offered to sell its SDM to an IBM customer in Tennessee. LzLabs has also implemented the

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 40 of 60

41

SDM on Microsoft’s Azure cloud services in the United States. Texas Wormhole has used the

SDM in the United States in its SDM development within the United States, and within Texas.

115. By at least the filing of this Complaint, IBM has disclosed the existence of the

’664 Patent and identified at least some of LzLabs’ and Texas Wormhole’s activities that

infringe at least one claim of the ’664 Patent. Thus, based on this disclosure, LzLabs and Texas

Wormhole have knowledge of the ’664 Patent and that their activities infringe the ’664 Patent.

Based on IBM’s disclosures, LzLabs and Texas Wormhole have also known or should have

known since at least the filing of this Complaint that customers, distributors, suppliers, and other

purchasers of the SDM product are infringing the ’664 Patent at least because LzLabs and Texas

Wormhole have known that they are infringing the ’664 Patent.

116. For example, LzLabs claims that the SDM provides support for IBM COBOL

Version 5 (COBOL V5).25 Through this support, the SDM implements each of the IBM

mainframe z/Architecture instructions that make up a COBOL application program compiled for

execution on the IBM mainframe, and in order to execute each such instruction, translates it into

one or more x86 architecture instructions that collectively accomplish the same results.

117. Because application programs compiled with COBOL V5 with the ARCH(8,

9, 10, or 11) option can, and typically do, include “Convert to Signed Packed” instructions, the

LzLabs translation must thereby include the translation of those instructions, which are defined

for computer execution according to the z/Architecture. These “Convert to Signed Packed”

instructions include both an opcode and a mask field. See the ’644 Patent at 25:29-26:11.

25 See The Anatomy of Mainframe Workload Migration, LzLabs (Apr. 2018) (https://www.lzlabs.com/resources/the-
anatomy-of-mainframe-application-workload/) (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 41 of 60

42

118. Lastly, when performing these machine instructions by a central processing

unit, the SDM performs an operation that provides a result, said result comprising a sign; and

indicating by a selection indicator of the mask field how the sign is to be encoded in response to

the sign being a specified sign. Specifically, as defined by the z/Architecture, the Convert to

Signed Packed instructions operate to convert a decimal floating point number to a packed

decimal number. Because the encoding for the sign of packed decimal numbers can vary, the

z/Architecture further specifies that the particular encoding of the sign portion of the result is

based on a selection indicator (bit 3) in the Mask field (M4) of the Convert to Signed Packed

instruction. Id. Thus, the generated instructions by the SDM will necessarily utilize this

indicator in the Mask field to achieve a properly encoded sign result, which is necessary to meet

LzLabs’ claims of results equivalent to those achieved when the application runs on the IBM

mainframe.

119. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs also actively, knowingly, and intentionally induces

infringement of one or more claims of the ’664 Patent under 35 U.S.C. § 271(b) by actively

encouraging others to import, make, use, sell, and/or offer to sell in the United States, the SDM

product. LzLabs instructs its customers how to use the SDM product by allowing customer

applications written and compiled for the IBM mainframe environment, and utilizing proprietary

IBM software services, including the IBM Middleware Service Routines, Operating System

Service Routines, and IBM COBOL & PL/I Service Routines, “without changes and without

compromise” on the SDM product, as described above. For example, the LzLabs Software

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 42 of 60

43

Designed Mainframe Product Data Sheet states the SDM enables applications written in COBOL

and PL/I and offers replacements for CICS and IMS.26

120. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs further contributes to the infringement of one more claims

of the ’664 Patent under 35 U.S.C. § 271(c) by offering to sell, selling, and/or importing into the

United States a component of the SDM product, or a material or apparatus for using in practicing

a process of claims in the ’664 Patent, that constitutes a material part of the inventions, knowing

the same to be especially made or especially adapted for use in an infringement of the ’664

Patent, and is not a staple article or commodity of commerce suitable for substantial

noninfringing use. In this case, LzLabs’ SDM product is a material part of at least the invention

of claim 14 of the ’664 Patent for the reasons set forth herein.

121. LzLabs’ and Texas Wormhole’s patent infringement is willful, at least

because the SDM was created by copying the functionality of IBM hardware.

122. LzLabs’ and Texas Wormhole’s infringement has damaged and continues to

damage IBM in an amount yet to be determined, of at least a reasonable royalty and/or the lost

profits that IBM would have made but for LzLabs’ acts of infringement.

FIFTH CAUSE OF ACTION
(’420 Patent Infringement – 35 U.S.C. § 271)

123. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 122 as if fully set forth herein.

124. Claim 1 of the ’420 Patent is exemplary, and states as follows:

A method for managing branch instructions in an emulation
environment that is executing a program, the method comprising:

26 https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWBplr (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 43 of 60

44

populating a plurality of entries in a branch target buffer residing
within an emulated environment in which the program is
executing, each of the entries comprising an instruction address
and a target address of a branch instruction of the program;

based on an indirect branch instruction of the program being
encountered,

obtaining an indirect branch instruction target key for the indirect
branch instruction;

analyzing, by a processor based on the indirect branch instruction
target key, one of the entries in the branch target buffer to
determine if the instruction address of the one entry is associated
with a target address of the indirect branch instruction, wherein the
analyzing comprises comparing the instruction address of the one
entry to the indirect branch instruction target key; and

based on the instruction address of the one entry being associated
with the target address of the indirect branch instruction, branching
to the target address of the one entry.

125. LzLabs’ SDM product, used by Texas Wormhole, meets all the limitations of

at least claim 1 of the ’420 Patent in violation of 35 U.S.C. § 271(a).

126. LzLabs and Texas Wormhole have directly infringed, continue to infringe,

and/or, at least as of the filing of this Complaint, induce or contribute to the infringement by

others of one or more claims of the ’420 Patent by making, using, selling, offering for sale,

and/or importing into the United States, without authority of license, the “Software Defined

Mainframe” or “SDM” in violation of 35 U.S.C. §§ 271(a), (b), and (c). For example, LzLabs

has offered to sell its SDM to an IBM customer in Tennessee. LzLabs has also implemented the

SDM on Microsoft’s Azure cloud services in the United States. Texas Wormhole has used the

SDM in the United States in its SDM development within the United States, and within Texas.

127. By at least the filing of this Complaint, IBM has disclosed the existence of the

’420 Patent and identified at least some of LzLabs’ and Texas Wormhole’s activities that

infringe at least one claim of the ’420 Patent. Thus, based on this disclosure, LzLabs and Texas

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 44 of 60

45

Wormhole have knowledge of the ’420 Patent and that their activities infringe the ’420 Patent.

Based on IBM’s disclosures, LzLabs and Texas Wormhole have also known or should have

known since at least the filing of this Complaint that customers, distributors, suppliers, and other

purchasers of the SDM product are infringing the ’420 Patent at least because LzLabs and Texas

Wormhole have known that they are infringing the ’420 Patent.

128. For example, as described above, the SDM emulates computer instructions

originating from a source machine, such as the IBM mainframe, to produce sequences of

instructions on a target machine. This emulation allows a customer to utilize IBM services

“without changes and without compromise” as described above. In addition, the SDM has stated

design objectives that it will provide emulation/translation services “with behavioral

equivalence,” and that “[s]uch translation involves much more than simply converting one

instruction set into another, memory management must be preserved plus a range of other

considerations taken to ensure functional compatibility. But the end result” of the emulation

“behaves exactly like the original mainframe application program.” The Software Defined

Mainframe – Leveraging “the Power of Modern”, LzLabs (Sept. 2017).

129. As described in the ’420 Patent, the branch target buffer entries preserve the

actual memory location, or “target address,” of an indirect branch instruction, when that location

is first determined upon encountering an indirect branch instruction whose calculated target

“instruction address” is processed to determine the actual location (target address) of the code

where execution is to continue as a result of executing the indirect branch instruction. The branch

target buffer functions as a cache, allowing faster processing of an indirect branch instruction

whenever the calculated target “instruction address” of that instruction has an entry in the buffer.

See the ’420 Patent at 5:24-6:21.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 45 of 60

46

130. To meet its stated performance objectives, the SDM creates and populates, as

the mainframe application load module runs, a multi-entry buffer in its emulation environment,

each of the entries comprising an instruction address and a target address of a branch instruction

of the program.

131. Many indirect branches are typically present and often executed repeatedly in

COBOL and PL/I mainframe applications. LzLabs’ claims of equivalent performance to that of

the IBM mainframe cannot be credible if the LzLabs SDM does not implement a branch target

buffer to reduce the performance penalty otherwise associated with determining, each time an

indirect branch instruction is encountered, the actual memory location of the code where

execution is to continue as a result of executing the indirect branch instruction. LzLabs makes

use of such a branch target buffer as it has stated that one mode of the SDM “‘remembers’ the

branch target address so as to avoid returning to the [incremental compiler] the next time that

branch is executed” and that this mode “can reduce application elapsed times by 40% when

compared to the same application running in interpretive execution mode.”27

132. Lastly, the SDM uses the indirect branch target instruction address, which is a

memory address in the program being emulated, as a key to search for a matching key to

determine if the actual location of the code, which is the corresponding memory address in the

emulation environment for the program being emulated, where execution is to continue (the

target address) has previously been determined and used to populate an entry in the branch target

buffer, and if so, to identify that entry. See id. If an entry in the branch target buffer with a

27 The Anatomy of Mainframe Workload Migration, LzLabs (Apr. 2018) (https://www.lzlabs.com/resources/the-
anatomy-of-mainframe-application-workload) (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 46 of 60

47

matching key is found, the SDM uses the target address stored in that entry as the actual target

address for the current indirect branch instruction and branches to that address. See id.

133. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs also actively, knowingly, and intentionally induces

infringement of one or more claims of the ’420 Patent under 35 U.S.C. § 271(b) by actively

encouraging others to import, make, use, sell, and/or offer to sell in the United States, the SDM

product. LzLabs instructs its customers how to use the SDM product by allowing customer

applications written and compiled for the IBM mainframe environment, and utilizing proprietary

IBM software services, including the IBM Middleware Service Routines, IBM Operating System

Service Routines, and IBM COBOL & PL/I Service Routines, “without changes and without

compromise” on the SDM product, as described above. For example, the LzLabs Software

Designed Mainframe Product Data Sheet states the SDM enables applications written in COBOL

and PL/I and offers replacements for CICS and IMS.28

134. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs further contributes to the infringement of one more claims

of the ’420 Patent under 35 U.S.C. § 271(c) by offering to sell, selling, and/or importing into the

United States a component of the SDM product, or a material or apparatus for using in practicing

a process of claims in the ’420 Patent, that constitutes a material part of the inventions, knowing

the same to be especially made or especially adapted for use in an infringement of the ’420

Patent, and is not a staple article or commodity of commerce suitable for substantial

noninfringing use. In this case, LzLabs’ SDM product is a material part of at least the invention

of claim 1 of the ’420 Patent for the reasons set forth herein.

28 https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWBplr (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 47 of 60

48

135. LzLabs’ and Texas Wormhole’s patent infringement is willful, at least

because the SDM was created by copying the functionality of proprietary IBM software services.

136. LzLabs’ and Texas Wormhole’s infringement has damaged and continues to

damage IBM in an amount yet to be determined, of at least a reasonable royalty and/or the lost

profits that IBM would have made but for LzLabs’ acts of infringement.

SIXTH CAUSE OF ACTION
(’289 Patent Infringement – 35 U.S.C. § 271)

137. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 136 as if fully set forth herein.

138. Claim 16 of the ’289 Patent is exemplary, and states as follows:

A method for emulating computer instructions from a source
machine to produce sequences of instructions on a target machine,
said method comprising:

obtaining by the target machine a computer instruction from the
source machine, said source machine having a different
architecture from said target machine; and

generating a sequence of target machine instructions which
together operate to derive an encoding for a target machine
condition code for the computer instruction, wherein the sequence
of target machine instructions provides distinguishing information
to distinguish between a plurality of possible outcomes for the
target machine condition code, and directly calculates the target
machine condition code without using branch instructions, the
directly calculating comprising:

determining an intermediate condition code value, the intermediate
condition code value being a provisional value for the target
machine condition code and subject to change based on the
distinguishing information; and

determining, based on the intermediate condition code value and
based on the distinguishing information, the target machine
condition code, wherein at least part of said distinguishing
information is separate from the intermediate condition code value.

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 48 of 60

49

139. LzLabs’ SDM product, used by Texas Wormhole, meets all the limitations of

at least claim 16 of the ’289 Patent in violation of 35 U.S.C. § 271(a).

140. LzLabs and Texas Wormhole have directly infringed, continue to infringe,

and/or, at least as of the filing of this Complaint, induce or contribute to the infringement by

others of one or more claims of the ’289 Patent by making, using, selling, offering for sale,

and/or importing into the United States, without authority of license, the “Software Defined

Mainframe” or “SDM” in violation of 35 U.S.C. §§ 271(a), (b), and (c). For example, LzLabs

has offered to sell its SDM to an IBM customer in Tennessee. LzLabs has also implemented the

SDM on Microsoft’s Azure cloud services in the United States. Texas Wormhole has used the

SDM in the United States in the course of its SDM development within the United States, and

within Texas.

141. By at least the filing of this Complaint, IBM has disclosed the existence of the

’289 Patent and identified at least some of LzLabs’ and Texas Wormhole’s activities that

infringe at least one claim of the ’289 Patent. Thus, based on this disclosure, LzLabs and Texas

Wormhole have knowledge of the ’289 Patent and that their activities infringe the ’289 Patent.

Based on IBM’s disclosures, LzLabs and Texas Wormhole have also known or should have

known since at least the filing of this Complaint that customers, distributors, suppliers, and other

purchasers of the SDM product are infringing the ’289 Patent at least because LzLabs and Texas

Wormhole have known that they are infringing the ’289 Patent.

142. For example, as described above, the SDM emulates computer instructions

originating from a source machine to produce sequences of instructions on a target machine.

This emulation allows a customer to utilize IBM services “without changes and without

compromise” as described above. In addition, the SDM has stated design objectives that it will

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 49 of 60

50

provide emulation services “with behavioral equivalence,” to that of IBM’s services and that “the

end result” of the emulation “behaves exactly like the original mainframe application program.”

The Software Defined Mainframe – Leveraging “the Power of Modern”, LzLabs (Sept. 2017).

143. To perform this emulation, the SDM first obtains, by the “target machine”

with an x86 architecture, a computer instruction that is intended for a “source machine” having a

z/Architecture. Id. Once it receives this instruction, the SDM generates a sequence of target

instructions which together operate to derive an IBM mainframe condition code representation

on the target machine, the “target machine condition code,” for a particular IBM mainframe

source instruction, as such a condition code may be required to execute a subsequent IBM

mainframe source instruction. Performance considerations for a processor, such as an x86

machine using pipelining, dictates that this be done without using branch instructions.

Additionally, target instructions would provide information distinguishing between different

IBM mainframe condition codes to ensure that the correct condition code is generated. Because

IBM mainframe instructions that set the condition code are common in COBOL and PL/I

compile programs, if the “branchless” calculations of the ’289 patent were not used, efficiency

and performance of related services would noticeably decrease. Thus, because LzLabs claims

that there is no such performance degradation, its SDM must make use of these “branchless”

calculations when determining the claimed condition code.

144. Lastly, when generating these condition codes without the use of branch

instructions, the SDM makes use of intermediate condition code values that are updated

throughout the calculation process. For example, the procedure for generating a condition code

without branches involves successive updates to an IBM mainframe condition code

representation on the target machine based on other values such as sign bits and the like

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 50 of 60

51

(“distinguishing information”). Values stored in the mainframe condition code representation

before the final update are an “intermediate” condition code value subject to change based on

“distinguishing information” used for final update and determination of the condition code.

145. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs also actively, knowingly, and intentionally induces

infringement of one or more claims of the ’289 Patent under 35 U.S.C. § 271(b) by actively

encouraging others to import, make, use, sell, and/or offer to sell in the United States, the SDM

product. LzLabs instructs its customers how to use the SDM product by allowing customer

applications written and compiled for the IBM mainframe environment, and utilizing proprietary

IBM software services, including the IBM Middleware Service Routines, Operating System

Service, Routines, and IBM COBOL & PL/I Service Routines, “without changes and without

compromise” on the SDM product, as described above. For example, the LzLabs Software

Designed Mainframe Product Data Sheet states the SDM enables applications written in COBOL

and PL/I and offers replacements for CICS and IMS.29

146. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs further contributes to the infringement of one more claims

of the ’289 Patent under 35 U.S.C. § 271(c) by offering to sell, selling, and/or importing into the

United States a component of the SDM product, or a material or apparatus for using in practicing

a process of claims in the ’289 Patent, that constitutes a material part of the inventions, knowing

the same to be especially made or especially adapted for use in an infringement of the ’289

Patent, and is not a staple article or commodity of commerce suitable for substantial

29 https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWBplr (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 51 of 60

52

noninfringing use. In this case, LzLabs’ SDM product is a material part of at least the invention

of claim 16 of the ’289 Patent for the reasons set forth herein.

147. LzLabs’ and Texas Wormhole’s patent infringement is willful, at least

because the SDM was created by copying the functionality of IBM hardware.

148. LzLabs’ and Texas Wormhole’s infringement has damaged and continues to

damage IBM in an amount yet to be determined, of at least a reasonable royalty and/or the lost

profits that IBM would have made but for LzLabs’ acts of infringement.

SEVENTH CAUSE OF ACTION
(’209 Patent Infringement – 35 U.S.C. § 271)

149. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 148 as if fully set forth herein.

150. Claim 1 of the ’209 Patent is exemplary, and states as follows:

A method of translating subject program code executable by a
subject processor into target program code executable by a target
processor, said method comprising:

dividing the subject program code into a plurality of subject
program code units;

translating one or more of the subject program code units into one
or more target program code units; and executing the one or
more target program code units on the target processor;

wherein the translating step includes identifying a subject function
in the subject program code having a corresponding native
function of native code, wherein the native code is code
executable by the target processor, and identifying the native
function of the native code which corresponds to the identified
subject function; and

wherein the executing step includes executing the native function
on the target processor instead of executing a translated version
of the identified subject function, including transforming zero or
more function parameters from a target code representation to a
native code representation, invoking the native function with the
transformed zero or more functions parameters according to a

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 52 of 60

53

prototype of the native function, and transforming zero or more
return values of the invoked native function form a native code
representation to a target code representation.

151. LzLabs’ SDM product, used by Texas Wormhole, meets all of the limitations

of at least claim 1 of the ’209 Patent in violation of 35 U.S.C. § 271(a).

152. LzLabs and Texas Wormhole have directly infringed, continue to infringe,

and/or, at least as of the filing of this Complaint, induce or contribute to the infringement by

others of one or more claims of the ’209 Patent by making, using, selling, offering for sale,

and/or importing into the United States, without authority of license, the “Software Defined

Mainframe” or “SDM” in violation of 35 U.S.C. §§ 271(a), (b), and (c). For example, LzLabs

has offered to sell its SDM to an IBM customer in Tennessee. LzLabs has also implemented the

SDM on Microsoft’s Azure cloud services in the United States.30 Texas Wormhole has used the

SDM in the United States in the course of its SDM development within the United States, and

within Texas.

153. By at least the filing of this Complaint, IBM has disclosed the existence of the

’209 Patent and identified at least some of LzLabs’ and Texas Wormhole’s activities that

infringe at least one claim of the ’209 Patent. Thus, based on this disclosure, LzLabs and Texas

Wormhole have knowledge of the ’209 Patent and that their activities infringe the ’209 Patent.

Based on IBM’s disclosures, LzLabs and Texas Wormhole have also known or should have

known since at least the filing of this Complaint that customers, distributors, suppliers, and other

purchasers of the SDM product are infringing the ’209 Patent at least because LzLabs and Texas

Wormhole have known that they are infringing the ’209 Patent.

30 Windows Application Page for LzLabs’ Software Defined Mainframe, LzLabs,
https://appsource.microsoft.com/en-us/product/web-apps/lzlabsgmbh-5083555.lzlabs-softwaredefinedmainframe
(last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 53 of 60

54

154. For example, the SDM translates subject program code executable by a

subject processor into target program code executable by a “target processor” by effectively

duplicating the IBM mainframe and software environment on an x86 platform. The SDM

divides the subject program code into a plurality of subject program code units by separately

processing each of the object or load modules that make up a mainframe application. The

Software Defined Mainframe – Leveraging “the Power of Modern”, LzLabs (Sept. 2017). The

SDM parses IBM mainframe code into individual instructions or sequences prior to translating

them into equivalent x86 instructions. The SDM translates one or more of the subject program

code units into one or more target program code units. The SDM must translate the IBM

mainframe Instruction Set Architecture code into x86 instructions for them to execute on the

SDM x86 platform. Id. The SDM executes one or more target program code units on the target

processor when they are executed on the x86 platform.

155. Further, when translating IBM program code, the SDM identifies a subject

function in the subject program code having a corresponding native function of native code,

wherein the native code is executable by the target processor. As part of the overall translation

process, the SDM identifies IBM mainframe application calls to IBM run-time services, and

native x86 services are substituted for IBM mainframe services. Further, the SDM identifies the

native function of the native code that corresponds to the identified subject function. According

to LzLabs, “[w]hen legacy application programs are placed into the container, the customers’

programs are enhanced to run on modern computers and decades-old APIs are exchanged for

newer, more contemporary ones.” LzLabs appoints Gartner’s Dale Vecchio as Chief Marketing

Officer, LzLabs (Mar. 17, 2017), https://www.lzlabs.com/resources/lzlabs-appoints-gartners-

dale-vecchio-chief-marketing-officer/ (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 54 of 60

55

156. Lastly, when executing the target program code on the target processor, the

SDM executes the native function on the target processor instead of executing a translated

version of the identified subject function, including transforming zero or more function

parameters from a target code representation to a native code representation, invoking the native

function with the transformed zero or more function parameters according to a prototype of the

native function, and transforming zero or more return values of the invoked native function from

a native code representation to a target code representation. The SDM must execute the native

function corresponding to the IBM run-time service because there are no IBM run-time services

native to the SDM environment. According to LzLabs, the “SDM is a managed customer

application container technology that provides the capabilities for mainframe applications to

execute on open systems, with no requirement for recompilation or conversion of data types.”31

The SDM’s use of native APIs requires parameter transformations to permit handling by such

APIs. Additionally, as explained by LzLabs, “[t]he general objective at LzLabs is to develop the

SDM as the smallest possible software layer to map mainframe applications APIs and needs to

the equivalent Linux APIs.” Didier Durand & Dale Vecchio, As Much Mainframe as Needed,

But as Little as Possible, LzLabs (June 21, 2017), https://www.linkedin.com/pulse/much-

mainframe-needed-little-possible-didier-durand/ (last visited February 17, 2022).

157. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs also actively, knowingly, and intentionally induces

infringement of one or more claims of the ’209 Patent under 35 U.S.C. § 271(b) by actively

encouraging others to import, make, use, sell, and/or offer to sell in the United States, the SDM

31 https://www.lzlabs.com/resources/lzlabs-teams-up-with-amazon-web-services-to-deliver-legacy-mainframe-
applications-in-the-cloud/ (last visited February 17, 2022)

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 55 of 60

56

product. LzLabs instructs its customers how to use the SDM product by allowing customer

applications written and compiled for the IBM mainframe environment, and utilizing proprietary

IBM software services, including the IBM Middleware Service Routines, Operating System

Service Routines and IBM COBOL & PL/I Service Routines, “without changes and without

compromise” on the SDM product, as described above. For example, the LzLabs Software

Designed Mainframe Product Data Sheet states the SDM enables applications written in COBOL

and PL/I and offers replacements for CICS and IMS.32

158. At least as of the date of the filing of this Complaint and based on the

information set forth herein, LzLabs further contributes to the infringement of one more claims

of the ’209 Patent under 35 U.S.C. § 271(c) by offering to sell, selling, and/or importing into the

United States a component of the SDM product, or a material or apparatus for using in practicing

a process of claims in the ’209 Patent, that constitutes a material part of the inventions, knowing

the same to be especially made or especially adapted for use in an infringement of the ’209

Patent, and is not a staple article or commodity of commerce suitable for substantial

noninfringing use. In this case, LzLabs’ SDM product is a material part of at least the invention

of claim 1 of the ’209 Patent for the reasons set forth herein.

159. LzLabs’ and Texas Wormhole’s patent infringement is willful, at least

because the SDM was created by copying the functionality of IBM software.

160. LzLabs’ and Texas Wormhole’s infringement has damaged and continues to

damage IBM in an amount yet to be determined, of at least a reasonable royalty and/or the lost

profits that IBM would have made but for LzLabs’ acts of infringement.

32 https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWBplr (last visited February 17, 2022).

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 56 of 60

57

EIGHTH CAUSE OF ACTION
(False Advertising – Lanham Act 15 U.S.C. § 1125(a))

161. IBM repeats and realleges each and every allegation set forth in paragraphs 1

through 160 as if fully set forth herein.

162. LzLabs’ advertisements and promotions for its SDM contain false statements

of fact intended to deceive and mislead customers by misrepresenting the SDM’s functionality

and its compatibility with customer applications, which have been designed and compiled to

work with IBM’s mainframe.

163. For example, LzLabs’ Software Defined Mainframe Product Data Sheet states

that the SDM is a “[l]ow cost, functionally equivalent platform for existing customer legacy

system applications.” LzLabs has made a similar claim several other times, claiming that its

SDM “supports the necessary functionally-equivalent subsystem APIs to enable transparent

execution of the binary representations of these programs and data.”33 These statements are both

literally false and misleading.

164. The statements are literally, objectively false in that the SDM does not offer

the range of functions that IBM’s mainframe offers to customers—a fact which can be

objectively verified by a comparison of the functions available on each platform. Thus, the SDM

cannot be a functionally equivalent platform.

165. The statements are also misleading because they indicate to customers that

they can use their existing IBM-compatible application with no modification to or interruption in

33 Swisscom Moves Entire Mainframe Workload to Software Defined Mainframe in the Cloud, LzLabs,
https://www.lzlabs.com/resources/swisscom-moves-entire-mainframe-workload-to-software-defined-mainframe-in-
the-cloud/ (last visited February 17, 2022); LzLabs teams up with Amazon Web Services to deliver legacy mainframe
applications in the cloud, LzLabs, https://www.lzlabs.com/resources/lzlabs-teams-up-with-amazon-web-services-to-
deliver-legacy-mainframe-applications-in-the-cloud/ (last visited February 17, 2022)

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 57 of 60

58

the current operation and performance of those applications. Each new deployment of the SDM

requires LzLabs to undertake additional custom development implementing features and

functionalities available in the IBM mainframe platform that LzLabs did not implement for prior

SDM deployments. Thus, in touting the SDM as a product adapted for seamless and immediate

integration with IBM-compatible applications, LzLabs misrepresents the potential costs and

delays involved in each deployment of the SDM for a new customer with differing functionality

requirements.

166. Apart from its lower price, the SDM’s suitability for IBM-compatible

applications is the SDM’s primary selling point for customers. Thus, it is a material

consideration for any customer in the market for a mainframe.

167. LzLabs made these false or misleading statements about material features of

the SDM to customers both in the U.S. and abroad in an effort to influence those customers to

abandon their use of the IBM mainframe and replace it with the SDM.

168. As a direct and proximate result of LzLabs’ false advertisements and

promotions, some IBM mainframe customers have been misled, and others are likely to be

misled, about the adequacy and efficacy of the SDM as a replacement for IBM’s mainframe.

The reputation of IBM and its mainframe platform is therefore harmed as a result.

169. Development work on the SDM is performed both in Switzerland and in

Texas. LzLabs has installed and conducted sales tests for at least one current IBM customer in

Tennessee. Thus, the SDM is a product in interstate commerce.

DEMAND FOR JURY TRIAL

IBM demands a jury trial for all issues deemed to be triable by a jury.

PRAYER FOR RELIEF

WHEREFORE, IBM requests the following relief:

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 58 of 60

59

A. An injunction restraining LzLabs, Texas Wormhole, and their officers, agents,

employees, affiliates, and all other persons in concert with them from further misappropriating or

using IBM’s trade secrets, from further engaging in acts in violation of the patent laws, and from

engaging in further false advertising practices;

B. Entry of judgment holding LzLabs and Texas Wormhole liable for willful and malicious

misappropriation of IBM’s trade secrets, patent infringement, and false advertising;

C. An award of damages according to proof, including without limitation IBM’s lost profits

and amounts by which LzLabs and Texas Wormhole has been unjustly enriched, together with

prejudgment and post-judgment interest;

D. An award of exemplary and punitive damages and attorneys’ fees in light of the willful

and malicious nature of LzLabs’ and Texas Wormhole’s conduct and misappropriation of the

IBM trade secrets; and

E. Any and all additional legal and equitable relief that may be available under law and that

the court may deem proper.

Dated: March 21, 2022
 Respectfully submitted,

THE DACUS FIRM, P.C.

 By: /s/ Deron R. Dacus
 Deron R. Dacus
 State Bar No. 00790553
 The Dacus Firm, P.C.
 821 ESE Loop 323, Suite 430
 Tyler, TX 75701
 Phone/Fax: (903) 705-1117
 ddacus@dacusfirm.com

QUINN EMANUEL URQUHART &
SULLIVAN, LLP

David Nelson
Nathan Hamstra

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 59 of 60

60

davenelson@quinnemanuel.com
nathanhamstra@quinnemanuel.com
191 N. Wacker Drive, Suite 2700
Chicago, Illinois 60606
(312) 705-7400

Alexander Rudis
alexanderrudis@quinnemanuel.com
51 Madison Avenue, 22nd Floor,
New York, New York 10010
(212) 849-7000

Nina Tallon
ninatallon@quinnemanuel.com
1300 I Street NW, Suite 900
Washington, D.C. 20005

 (202) 538-8000

 Attorneys for Plaintiff International
 Business Machines Corporation

Case 6:22-cv-00299 Document 1 Filed 03/21/22 Page 60 of 60

